1 Fig. 9 shows the curve y = f(x), where $f(x) = \frac{2x^2 - 1}{x^2 + 1}$ for the domain $0 \le x \le 2$.

(i) Show that
$$f'(x) = \frac{6x}{(x^2 + 1)^2}$$
, and hence that $f(x)$ is an increasing function for $x > 0$. [5]

(ii) Find the range of
$$f(x)$$
. [2]

(iii) Given that
$$f''(x) = \frac{6-18x^2}{(x^2+1)^3}$$
, find the maximum value of $f'(x)$. [4]

The function g(x) is the inverse function of f(x).

(iv) Write down the domain and range of g(x). Add a sketch of the curve y = g(x) to a copy of Fig. 9. [4]

(v) Show that
$$g(x) = \sqrt{\frac{x+1}{2-x}}$$
. [4]

2 The variables x and y satisfy the equation $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 5$.

(i) Show that
$$\frac{dy}{dx} = -\left(\frac{y}{x}\right)^{\frac{1}{3}}$$
. [4]

Both *x* and *y* are functions of *t*.

(ii) Find the value of
$$\frac{dy}{dt}$$
 when $x = 1$, $y = 8$ and $\frac{dx}{dt} = 6$. [3]

3 Fig. 8 shows the curve y = f(x), where $f(x) = 1 + \sin 2x$ for $-\frac{1}{4}\pi \le x \le \frac{1}{4}\pi$.

Fig. 8

- (i) State a sequence of two transformations that would map part of the curve $y = \sin x$ onto the curve y = f(x). [4]
- (ii) Find the area of the region enclosed by the curve y = f(x), the *x*-axis and the line $x = \frac{1}{4}\pi$. [4]
- (iii) Find the gradient of the curve y = f(x) at the point (0, 1). Hence write down the gradient of the curve $y = f^{-1}(x)$ at the point (1, 0). [4]
- (iv) State the domain of $f^{-1}(x)$. Add a sketch of $y = f^{-1}(x)$ to a copy of Fig. 8. [3]
- (v) Find an expression for $f^{-1}(x)$. [2]