1 Fig. 9 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{2 x^{2}-1}{x^{2}+1}$ for the domain $0 \leqslant x \leqslant 2$.

Fig. 9
(i) Show that $\mathrm{f}^{\prime}(x)=\frac{6 x}{\left(x^{2}+1\right)^{2}}$, and hence that $\mathrm{f}(x)$ is an increasing function for $x>0$.
(ii) Find the range of $\mathrm{f}(x)$.
(iii) Given that $\mathrm{f}^{\prime \prime}(x)=\frac{6-18 x^{2}}{\left(x^{2}+1\right)^{3}}$, find the maximum value of $\mathrm{f}^{\prime}(x)$.

The function $\mathrm{g}(x)$ is the inverse function of $\mathrm{f}(x)$.
(iv) Write down the domain and range of $\mathrm{g}(x)$. Add a sketch of the curve $y=\mathrm{g}(x)$ to a copy of Fig. 9 .
(v) Show that $\mathrm{g}(x)=\sqrt{\frac{x+1}{2-x}}$.

2 The variables x and y satisfy the equation $x^{\frac{2}{3}}+y^{\frac{2}{3}}=5$.
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\left(\frac{y}{x}\right)^{\frac{1}{3}}$.

Both x and y are functions of t.
(ii) Find the value of $\frac{\mathrm{d} y}{\mathrm{~d} t}$ when $x=1, y=8$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=6$.

3 Fig. 8 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=1+\sin 2 x$ for $-\frac{1}{4} \pi \leqslant x \leqslant \frac{1}{4} \pi$.

Fig. 8
(i) State a sequence of two transformations that would map part of the curve $y=\sin x$ onto the curve $y=\mathrm{f}(x)$.
(ii) Find the area of the region enclosed by the curve $y=\mathrm{f}(x)$, the x-axis and the line $x=\frac{1}{4} \pi$.
(iii) Find the gradient of the curve $y=\mathrm{f}(x)$ at the point $(0,1)$. Hence write down the gradient of the curve $y=\mathrm{f}^{-1}(x)$ at the point $(1,0)$.
(iv) State the domain of $\mathrm{f}^{-1}(x)$. Add a sketch of $y=\mathrm{f}^{-1}(x)$ to a copy of Fig. 8 .
(v) Find an expression for $\mathrm{f}^{-1}(x)$.

